|Member Login

Publications

2019 Conference Papers [20]

Visual Controllers for Relative Positioning in Indoor Settings

Mejias, L., & Campoy, P. (2019). Visual controllers for relative positioning in indoor settings. Retrieved from https://eprints.qut.edu.au/131165/

View more

Real-time Vision-only Perception for Robotic Coral Reef Monitoring and Management

Dunbabin, M., Dayoub, F., Lamont, R., & Martin, S. (2019). Real-time Vision-only Perception for Robotic Coral Reef Monitoring and Management. Retrieved from http://icra-2019-uwroboticsperception.ge.issia.cnr.it/assets/ICRA19-WS-URP-CameraReadySubmissions/ICRA19-WS-URP-Paper-20

View more

Deep Single Image Deraining Via Estimating Transmission and Atmospheric Light in rainy Scenes

Wang, Y., Shi, Q., Abbasnejad, E., Ma, C., Ma, X., & Zeng, B. (2019). Deep Single Image Deraining Via Estimating Transmission and Atmospheric Light in rainy Scenes. Retrieved from https://arxiv.org/pdf/1906.09433

View more

CVPR19 Tracking and Detection Challenge: How crowded can it get?

Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., … Taixé, T. (n.d.). CVPR19 Tracking and Detection Challenge: How crowded can it get? Retrieved from http://www.motchallenge.net/

View more

Dynamic Manipulation of Gear Ratio and Ride Height for a Novel Compliant Wheel using Pneumatic Actuators

Hojnik, T., Flick, P., Bandyopadhyay, T., & Roberts, J. (n.d.). Dynamic Manipulation of Gear Ratio and Ride Height for a Novel Compliant Wheel using Pneumatic Actuators. Retrieved from https://eprints.qut.edu.au/130717/

View more

Benchmarking Sampling-based Probabilistic Object Detectors

Miller, D., Sünderhauf, N., Zhang, H., Hall, D., & Dayoub, F. (n.d.). Benchmarking Sampling-based Probabilistic Object Detectors. Retrieved from http://openaccess.thecvf.com/content_CVPRW_2019/papers/Uncertainty and Robustness in Deep Visual Learning/Miller_Benchmarking_Sampling-based_Probabilistic_Object_Detectors_CVPRW_2019_paper.pdf

View more

Parallel Optimal Transport GAN

Avraham, G., Zuo, Y., & Drummond, T. (n.d.). Parallel Optimal Transport GAN *. Retrieved from http://openaccess.thecvf.com/content_CVPR_2019/papers/Avraham_Parallel_Optimal_Transport_GAN_CVPR_2019_paper.pdf

View more

Event Cameras, Contrast Maximization and Reward Functions: An Analysis

Stoffregen, T., & Kleeman, L. (n.d.). Event Cameras, Contrast Maximization and Reward Functions: an Analysis. Retrieved from http://openaccess.thecvf.com/content_CVPR_2019/papers/Stoffregen_Event_Cameras_Contrast_Maximization_and_Reward_Functions_An_Analysis_CVPR_2019_paper.pdf

View more

Binary Constrained Deep Hashing Network for Image Retrieval Without Manual Annotation

"T. Do et al., ""Binary Constrained Deep Hashing Network for Image Retrieval Without Manual Annotation,"" 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 2019, pp. 695-704. doi: 10.1109/WACV.2019.00079"

View more

Multi-Scale Dense Networks for Deep High Dynamic Range Imaging

"Q. Yan et al., ""Multi-Scale Dense Networks for Deep High Dynamic Range Imaging,"" 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 2019, pp. 41-50. doi: 10.1109/WACV.2019.00012"

View more

TopNet: Structural Point Cloud Decoder

Tchapmi, L. P., Kosaraju, V., Rezatofighi, H., Reid, I., & Savarese, S. (2019). TopNet: Structural Point Cloud Decoder. Retrieved from http://openaccess.thecvf.com/content_CVPR_2019/html/Tchapmi_TopNet_Structural_Point_Cloud_Decoder_CVPR_2019_paper.html

View more

A Generative Adversarial Density Estimator

Ehsan Abbasnejad, M., Shi, Q., van den Hengel, A., & Liu, L. (2019). A Generative Adversarial Density Estimator. Retrieved from http://openaccess.thecvf.com/content_CVPR_2019/html/Abbasnejad_A_Generative_Adversarial_Density_Estimator_CVPR_2019_paper.html

View more

Min-Max Statistical Alignment for Transfer Learning

Herath, S., Harandi, M., Fernando, B., Nock, R., & Basura, F. (n.d.). Min-Max Statistical Alignment for Transfer Learning. Retrieved from http://users.cecs.anu.edu.au/~rnock/docs/cvpr19-hhfn-camera-ready-main.pdf

View more

Expression of Curiosity in Social Robots

Ceha, J., Chhibber, N., Goh, J., McDonald, C., Oudeyer, P.-Y., Kulić, D., & Law, E. (2019). Expression of Curiosity in Social Robots. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19, 1–12. https://doi.org/10.1145/3290605.3300636

View more

Bayesian Active Learning for Collaborative Task Specification Using Equivalence Regions

Wilde, N., Kulic, D., & Smith, S. L. (2019). Bayesian Active Learning for Collaborative Task Specification Using Equivalence Regions. IEEE Robotics and Automation Letters, 4(2), 1691–1698. https://doi.org/10.1109/LRA.2019.2897342

View more

Homography estimation of a moving planar scene from direct point correspondence

De Marco, S., Hua, M. D., Mahony, R., & Hamel, T. (2019). Homography estimation of a moving planar scene from direct point correspondence. In Proceedings of the IEEE Conference on Decision and Control (Vol. 2018–Decem, pp. 565–570). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CDC.2018.8619386

View more

Single image deblurring and camera motion estimation with depth map

Pan, L., Dai, Y., & Liu, M. (2019). Single image deblurring and camera motion estimation with depth map. In Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019 (pp. 2116–2125). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/WACV.2019.00229

View more

On the structure of kinematic systems with complete symmetry

Trumpf, J., Mahony, R., & Hamel, T. (2019). On the structure of kinematic systems with complete symmetry. In Proceedings of the IEEE Conference on Decision and Control (Vol. 2018–Decem, pp. 1276–1280). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CDC.2018.8619718

View more

Deep Learning AI for Corrosion Detection

Nash, W., Drummond, T., & Birbilis, N. (2019, May 15). Deep Learning AI for Corrosion Detection. Retrieved from https://www.onepetro.org/conference-paper/NACE-2019-13267

View more

Recovering Faces From Portraits with Auxiliary Facial Attributes

*Shiri, F., Yu, X., Porikli, F., Hartley, R., & Koniusz, P. (2019). Recovering Faces From Portraits with Auxiliary Facial Attributes. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 406–415). Waikoloa Village, Hawaii, United States: IEEE. http://doi.org/10.1109/WACV.2019.00049

View more

Australian Centre for Robotic Vision
2 George Street Brisbane, 4001
+61 7 3138 7549